Fotovoltaika



2.2. Rodzaje systemów fotowoltaicznych.

Wyróżnia się trzy podstawowe konfiguracje systemów fotowoltaicznych: wolnostojące, hybrydowe i dołączone do sieci.

Systemy wolnostojące

Systemy wolnostojące korzystają jedynie z energii produkowanej w ogniwach fotowoltaicznych. System taki składa się z panelu fotowoltaicznego, akumulatora oraz urządzenia kontrolującego stopień naładowania akumulatora i odłączającego panel, gdy akumulator jest w pełni naładowany lub odłączającego urządzenie zasilane chroniąc akumulator przed jego zbytnim rozładowaniem. Akumulatory muszą mieć więc wystarczająco dużą pojemność, aby zapewnić dostarczanie energii w nocy oraz w okresach złej pogody.

Systemy hybrydowe

Systemy hybrydowe są kombinacją panelu fotowoltaicznego i innego systemu wytwarzania energii takiego, jak np. generator spalinowy, gazowy lub wiatrowy. Dla zapewnienia efektywnego wykorzystania różnych sposobów wytwarzania energii systemy hybrydowe mają zazwyczaj bardziej skomplikowane układy kontrolne niż systemy wolnostojące. Dzięki wykorzystaniu dodatkowego źródła energii panel fotowoltaiczny w systemie hybrydowym może być mniejszy niż w analogicznych systemie wolnostojącym. Dlatego w niektórych przypadkach system hybrydowy może być tańszy.

Systemy dołączone do sieci

Systemy dołączone do sieci mogą mieć postać elektrowni z dużą ilością paneli fotowoltaicznych oddających energię do sieci elektroenergetycznej. Innym wykorzystaniem takich systemów może być zasilanie budynków dołączonych do sieci, gdzie energię z sieci pobiera się tylko wtedy, gdy zapotrzebowanie na nią przewyższa jej produkcję w ogniwach fotowoltaicznych. Systemy te dołączone są do sieci poprzez falownik. Akumulatory w tym typie systemu nie są potrzebne, ponieważ sieć jest w stanie przyjąć całą energię wyprodukowaną przez system fotowoltaiczny. Projektowanie systemów fotowoltaicznych jest zazwyczaj optymalizowane przy użyciu programów komputerowych (np. ASHLING 7.0), które dopasowują przewidywany profil obciążenia w ciągu roku i dnia do przeciętnego słonecznego napromieniowania na danym obszarze. Takie programy potrzebne są aby zdeterminować optymalną wielkość zestawu modułów i akumulatora, dobrać kontroler i falownik. Wydajność systemu zależy od promieniowania słonecznego podającego na zestaw modułów PV. Na przykład, wysoce użyteczny system wiejski ze współczynnikiem sprawności 50% w południowej Europie, gdzie promieniowanie słoneczne wynosi 1600 kWh/m2/rok może dać 800 kWh/kWp/rok. Jednakże na północy Europy, gdzie promieniowanie słoneczne wynosi 1000 kWh/m2/rok, system ten mógłby dać jedynie 500 kWh/kWp/rok.

Wydajność wolnostojących, małych, wiejskich systemów elektryfikacyjnych, zmienia się w szerokim zakresie w zależności od sposobu jego użytkowania przez odbiorców. Typowe, małe systemy wiejskie mają roczne współczynniki sprawności pomiędzy 30% a 60% (odpowiednik przeciętnych wydajności rzędu 300 - 1000 kWh/kWp na rok).

Wolnostojące systemy profesjonalne mają zwykle niskie wydajności, ponieważ pracują prawie przy stałym obciążeniu przez cały rok i ich zestawy modułów muszą być wystarczająco duże aby zapewnić dostateczną ilość energii w zimie, co powoduje, że część energii elektrycznej produkowanej w lecie jest bezużyteczna. Typowe profesjonalne systemy w Europie mają roczne współczynniki sprawności pomiędzy 20% a 30% (odpowiednik przeciętnych wydajności rzędu 200 - 550 kWh/kWp/rok).

Hybrydowe systemy fotowoltaiczne mają zazwyczaj wyższe roczne współczynniki sprawności niż systemy wolnostojące, ponieważ zestaw modułów może być dopasowany tak, aby zapewnić obciążeniu dostateczną ilość energii w lecie i może być wsparty przez silnik spalinowy dla dostarczenia dodatkowej energii w zimie lub w czasie złej pogody. Typowe współczynniki sprawności systemów hybrydowych leżą, w zależności od strat pochodzących od kontrolera ładowania i akumulatora, w zakresie 50% do 70% (odpowiednik przeciętnych wydajności w granicach 500 - 1250 kWh/kWp/rok). Generatory fotowoltaiczne podłączone do sieci mają największy potencjał uzyskiwania wysokich współczynników sprawności i wydajności, ponieważ cała energia którą wytwarzają może być zużyta albo na miejscu, albo przekazana sieci elektroenergetycznej. Dobrze kontrolowany system, który współpracuje z wysokiej sprawności falownikiem, może osiągnąć współczynniki sprawności wyższe niż 80% (równowartość wydajności powyżej 800 - 1400 kWh/kWp/rok).


Kontakt

Kolonia Borek
ul. Przemysłowa 3
42-262 Poczesna
tel: +48 +34 3735336
tel./fax: +48 +34 3245161
e-mail: neon@neon.net.pl